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How well can we equate test forms
that are constructed by examinees?'

Howard Wainer Xiang-Bo Wang David Thissen
Educational Testing Service University of Hawai'i University of North Carolina

Abstract

When an exam consists, in whole or in part, of constructed response
items, it is a common practice to allow the examinee to choose among a
variety of questions. This procedure is usually adopted so that the limited
number of items that can be completed in the allotted time does not
unfairly affect the examinee. This results in the de facto administration of
several different test forms, where the exact structure of any particular
form is determined by the examinee. When different forms are
administered, a canon of good testing practice requires that those forms be
equated to adjust for differences in their difficulty. When the items are
chosen by the examinee traditional equating procedures do not strictly
apply. In this paper we explore how one might equate within an IRT
framework. We illustrate our procedure with data from the College
Board's Advanced Placement Test in Chemistry.

'This research was supported by the Educational Testing Service through the Research Statistics Project.
We are pleased to be able to acknowledge this help. The data, and advice about how to interpret themwere
supplied by Walter MacDonald, Behroz Maneckshana, Joe Stevens, and Hessie Taft. Without their expert
help and kind cooperation we would have had little to wl Ile about. We are also grateful to Rick Morganand
Jerry Melican whose careful reviews assured the accuracy of this description. Xiang-Bo Wang's work on this
project was done while he was an Educational Testing Service Summer Predoctoral Fellow. We would also
like to express our appreciation to R. Darrell Bock whose initial inquires led us to look into this problem.

5



It has long been understood that a good test must contain enough questions to cover
fairly the content domain. In his description of an 1845 survey of the Grammar and Writing

Schools of Boston, Horace Mann argued that

"... it is clear that the larger the number of questions put to a scholar, the better is
the opportunity to test his merits. If but a single question is put, the best scholar in
the school may miss it, though he would succeed in answering the next twenty
without a blunder; or the poorest scholar may succeed in answering one question,
though certain to fail in twenty others. Each question is a partial test, and the greater
the numbei of questions, therefore, the nearer does the test approach to complete-

ness. It is very uncertain which face of a die will turn up at the first throw; but if the
dice are thrown all day, there will be a great equality in the number of faces turned

up. fl

Despite the force of Mann's argument, there are reasons for the increasing pressure

to build tests using units that are larger than a single multiple choice item. Sometimes these
units can be thought of as aggregations of small items, e.g., testlets (Wainer & Kiely,
1987; Wainer & Lewis, 1990); sometimes they are just large items essays, mathe-
matical proofs, etc.). Large items, by definition, take the examinee longer to complete than
do short items. Therefore, fewer large items can be completed within a given testing time.
The fact that an examinee cannot complete very many large items within the allotted testing
time places the test builder in something of a quandary. One must either be satisfied with
fewer items, and possibily not span the content domain as fully as might have been the case
with a much larger number of smaller items, or expand the testing time sufficiently to allow

the content domain to be well represented. Often practicality limits testing time, and so
compromises on domain coverage must be made. A common compromise is to provide
several large items and allow the examinee to choose among them. The notion is that in this

way the examinee is not placed at adisadvantage by an unfortunate choice of domain
coverage by the test builder.

Allowing examinees to choose the items they will answer presents a difficult set of
problems. Despite the most strenuous efforts to write items of equivalent difficulty, some
might be more difficult than others. If examinees who choose different items are to be fairly
compared with one another, the scores obtained on those items must be equated. How?

All methods of equating are aimed at producing the subjunctive score that an
examinee would have obtained had that examinee answered a different set of items. To
accomplish this feat requires that the item responses that are not observed are"missing-at-
random." The act of equating means that we believe that the performance that we obscrve
on one item tells us something about what performance would have been on another item.
If we know that the procedure by which an item was chosen has nothing to do with any
specialized knowledge that the student possesses we can believe that the missing responses
are missing-at-random. However, if the examinee has a hand in choosing the items this
assumption becomes considerably less plausible.
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To understand this more concretely consider two different construction rules for a
spelling test. Suppose we have a corpus of 100,000 words of varying difficulty, and we
wish to manufacture a 100-item spelling test. From the proportion of the test's items that
the examinee correctly spells we will infer that the examinee can spell a proportion of the
total corpus. Two rules for constructing such a test might be:

Missing-at random: We select 100 words at random from the corpus and present them
to the examinee. In this instance we believe that what we observe is a reasonable
representation of what we did not observe.

Examinee selected: A -word is presented at random to the examinee, who then decides
whether or not to attempt to spell it. After 100 attempts the proportion spelled cor-
rectly is the examinee's raw score. The usefulness of this score depends crucially on
the extent to which we believe that examinees' judgments of whether or not they can
spell particular words are related to actual ability. If there is no relation between
spelling ability and a priori expectation, then this method is as good.as missing-at-
random. At the other extreme, we might believe that examinees know perfectly well
whether or not they can spell a particular word correctly. In this instance a raw score
of 100% has quite a different meaning. Thus, if an examinee spells 90 words
correctly all we can be sure of is that that examinee can spell no fewer than 90 words
and no more than 99,990. A clue that helps us understand how to position our
estimate between these two extremes is the number of words passed over during the
course of obtaining the sample of 100. If the examinee has the option of omitting a
word, but in fact attempts the first 100 words presented, our estimate of that
examinee's proficiency will not be very different than that obtained under 'missing-
at-random.' If it takes 50,000 words for the examinee to find 100 to attempt we will
reach quite a different conclusion. If we have the option of forcing the examinee to
spell some previously rejected words (sampling from the unselected population), we
can further reduce uncertainty due to selection.

This example should make clear that the mechanism by which items are chosen is
almost as crucial for correct interpretation as the examinee's performance on those items.
Is there any way around this problem? How can we equate tests in which all, or some, of
the items are selected by the examinee? In this paper we examine one strategy for equating
different test forms that are constructed through examinee choice.

Page 3 7



The data

The data we use to illustrate our methodology are from the 1989 Advanced
Placement Examination in Chemistry. The Advanced Placement (AP) Program of the
College Board is meant to evaluate the efficacy of college level courses taught in secondary
schools. Exams are given in a variety of subjects and validity studies have been done that
have established a relationship between performance on these tests and likely performance
in associated college courses. A general finding is that AP students generally do better in
advanced college "courses than do the students who have taken the regular freshman-level
courses at that institution." (p. v, The 1989 Advanced Placement Examination in Chemistry
and its grading).

The 1989 Advanced Placement Examination in Chemistry is three hours long. It is
Divided into two sections with 90 minutes allotted for each. Section I consists of 75 five-
option multiple choice questions and accounts for 45% of the total grade. Section II con-
sists of problems and essay questions, and has four parts:

Part A is a single problem (Problem 1) that all examinees must answer, and accounts for
14% of the total grade.

Part B has two problems (Problems 2 and 3), and the examinee must answer exactly one of
those. This part accounts for 14% of the total grade.

Part C is treated as a single problem (Problem 4), but has eight parts. The examinee must
choose five of these to answer. This part accounts for 8% of the total grade.

Part D has five problems (Problems 5, 6, 7, 8 and 9) out of which the examinee must an-
swer three. This part accounts for 19% of the total grade.

This form of the exam was taken by approximately 18 thousand students2 in 1989. The test
form has been released and interested readers may obtain copies of it with the answers and
a full description of the scoring methodology from the College Board.

One can think of the various choice options yielding different test forms. Thus a
student who opted to answer Problem 2 had a different form of the test than a student who
opted for Problem 3. These two students would have in common the 75 multiple choice
items as well as Problem 1. The exam, as currently configured, can be partitioned by exam-
inee choice into 1,120 forms3 that overlap.

2The actual number of examinees was 18,462; however 31 tests were handed-in essentially blank and so
were excluded from the analysis.

2
3Part B yields 0 = 2. possible choices, part C yields (5) = 56 choices, and part D yields (3) = 10

choices. The product of these yields the total possible number of different test forms.
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At this point it is important to emphasize the crucial difference between the problem of
equating these 1,120 examinee-selected forms versus what could be done if the different
forms were assigned at random to examinees. In the latter case any one of a number of
traditional common-item equating methods would work. In this instance the violation of the
assumption that unseen responses are `missing-at-random' can make those methods com-
pletely invalid. To equate we must make some. assumptions about the missing data.
Unfortunately, there is nothing in the observed data that can allow us to test the validity of
such assumptions.

Consider a simplified, but extreme case. Suppose we truncate the test after
Problem 3. We now have two groups of examinees, those who answered Problem 2
(Group I) and those who answered Problem 3 (Group II). Both groups were presented
with the 75 multiple choice items and Problem 1. If we utilize traditional equating methods
we could obtain an estimate of the score that those in Group I would have obtained on
Problem 3. Suppose further that chemistry can be taught in two, quite different ways4 and
that the choice of questions reflects this diversity of course content. Examinees would tend
to choose the question that reflected their course of instruction. The subjunctive inference
made from the equating ignores the possibility that examinees might have a pretty good idea
of what kinds of questions they would have a better chance onthat their nonresponse is
nonignorable in the sense of Rubin (1987). Thus, when we speak of equating in this
instance we mean that the missing score that is estimated by the equating model is the §core
that the examinee would have obtained had that examinee taken the course for which that
item choice was better suited. If you think that such inferences are a bit of a stretch, you are
beginning to understand the logical dilemma of equating test forms involving examinee
choice.

The data analysis plan

The goal of this investigation is to examine the effects of examinee choice on scores
on the Chemistry AP test. We do not believe that it is possible to obtain unequivocal
answers because the nature of nonignorable nonresponse implies that available information
is insufficient. One must either gather additional information (perhaps validity data) or
assume away the problems. This study examines the viability of several plausible
assumptions.

We will consider the following questions:

1. Are we measuring the same thing with essays/problems as we are with multiple choice
questions?

2. Is the current method of scoring examinee chosen items viable (are the choices of equal
difficulty)?

3. If they appear not to be of equal difficulty how can we equate them?

40ne approach might emphasize all chemical reactions in terms of energy considerations, a second might be
the traditional approach involving valences and equation balancing.
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We will examine each of the questions in turn. However, before presenting all of
the details let us describe the analysis plan in broad terms. First, we will confine ourselves

to the study of a truncated test consisting only of the 75 multiple choice items and Problems
1, 2 and 3. A generalization of our methodology to the entire 1,120 possible forms is theo-

retically straightforward, although practically daunting.

For question 1:

We will fit an IRT model to Problems 1, 2 and 3 jointly, assuming ignorable
nonresponse-for the momentProblem 1, in this instance, provides the link for common-

item equating. This result, given the assumptions, yields an estimate of test forms equated

on an "essay proficiency."

Second, we redo this analysis, but use a set of multiple choice items as the link
between Problems 2 and 3. This yields an estimate of test forms equated on a "multiple

choice proficiency."5

If the parameters of Problems 2 and 3 are the same regardless of which anchor is
used we can conclude that there is no evidence to believe that essayproficiency is different

from multiple choice proficiency.

For question 2:

We examine the fit (-21oglikelihood) of a model that allows both Problems 2 and 3

to have different parameters and compare it with a model that restricts the two Problems'
parameters to be equal. If there is a significant increase in the quality of the fit with the
more general model we will conclude that the current scoring scheme that treats the
problems interchangeably is not justified. We will examine the size of the inequity by

calculating the expected raw score that each examinee would have on each of the two items.

This methodology is formally identical with that developed by Wainer, Sireci & Thissen
(1991) for detecting and measuring testlet DIF.

For question 3:

The very essence of nonignorable nonresponse is that, if it exists, one cannot
examine its effects with the data in hand. The answer to this question involves estimating
how well an examinee would have done on a problem that they opted not to answer. We
simply have no statistical way to assess how well any psychometric model does this.

5Actually it is not pure 'multiple choice' since the estimates of 0 are a mixture of multiple choice items
and a single essay, but if we are testing different things this should yield a different result than was obtained
with Problem I as the anchor.
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Instead, we will use the multiple choice anchor and the performance of Group I on
Problem 1 to predict how well someone in Group II would do on Problem 1. We can do
this by temporarily deleting the scores of individuals in Group II on Problem 1, repeating
some of the analyses performed to answer questions 1 and 2, and comparing the estimated
performance of Group II with their actual performance. We can also do the same thing for
Group I. While this does not tell us how well our model for equating works on problems
for which we do not have a criterion, it does provide a plausible upper bound on its
accuracy.

The details

The statistical model we used is an IRT model developed by Bock (1972) for fitting
data in nominal categories. It specializes to a model for ordered categories by imposing
monotonicity constraints on some of its parameters. We have used this successfully in a
variety of contexts (Sireci, Thissen, & Wainer, 1991; Thissen, Steinberg & Fitzpatrick,
1989; Thissen, Steinberg & Mooney, 1989; Thissen, Steinberg & Wainer, 1992; Wainer,
Sireci, & Thissen, 1991).

Bock' s 1972 Model

Suppose we have J large items, indexed by j, where j = 1, 2, ..., J. On each item
there are mi possible scores, so that for the jth item there is the possibility of responses
xi = 0, 1, 2, ..., mi . The statistical scoring model posits a single underlying (and
unobserved) dimension that we call latent proficiency, and denote 0. The model then.
represents the probability of obtaining any particular score as a function of proficiency. For
each item there is a set of functions, one for each response category. These functions are
sometimes called item characteristic curves (Lord & Novick, 1968), item operating curves
(Samejima, 1969), or trace lines (Thissen, Steinberg & Mooney, 1989). We shall follow
Thissen et al.'s (1989) notation and nomenclature.

The trace line for score x = 0, 1, ..., tn./ , for item j is

Tj,(0)
exp[aixe + cix]

exp[aid + cjk]
k=o

(1)

where the (ak, ck) i, k = 0, 1, ..:, mj are the item category parameters that characterize the
shape of the individual response trace lines. The aks are analogous to discriminations; the
cks analogous to intercepts. The model is not fully identified, and so we need to impose
some additional constraints. It is convenient to insist that the sum of each of the sets of pa-
rameters equal zero, i.e.
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m m1

Eaik = I cjk. 0 .

k =0 k =0

In this context, we reparameterize the model using centered polynomials of the as-

sociated scores to represent the category-to-category change in the aks and the cks:

and

ajk =1( cc jp (ic
p = 1

Cjk= Yjp (IC

p = 1

(2)

(3)

IA here the parameters (up, yp )j, p= 1, 2, ...P, for P < mj are the free parameters to be es-

timated from the data. The polynomial representation has, in the past, saved degrees of
freedom with no significant loss of accuracy. It also provides a check on the fit of the
model when the categories are ordered. If the categories are ordered the a's must be
monotonically ordered (Wainer, Sireci & Thissen, 1991).

The analysis strategy

We initially treat the multiple choice and the 'essay' parts of the exam separately.
However, after the initial analyses they will be joined as needed. Much of our argument

about the structure of the `missingness' of responses will be based on plausible but
untestable assumptions. We will tr;,, to be explicit about these through the ensuing

discussion.

Statistical decisions, when done on the basis of formal hypothesis tests, are based

on the size of the likelihood ratio. We fit two models, one a proper submodel of the other,
and compare their likelihoods (actually we will look at the difference between the chi-

square statistic obtained from -21oglikelihood for each model). The difference between two
chi-squares is also a chi-square whose degrees of freedom is the number fewer parameters
in the more restricted model. This methodology is widely used; see Judd & McCleliand
(1989), who base an entire statistics course on this concept.

We shall not be overly concerned with overall statistical fit measures because a
sample of more than 18 thousand examinees allows us to reject most models. Instead, we
concentrate primarily on the absolute siz:t of effects and the size of differences.
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The size of the test is unwieldy for the large number of analyses required in
developmental work like this. Consequently we will follow Einstein's advice6 and simplify
matters considerably. In doing so we will try to maintain the minimal test that still contains
the elements that we wish to investigate. The first simplification is to reduce the essay por-
tion of the test to parts A and B. This partitions the examinee population into two self-
selected groups (Groups I and II, who chose respectively, Problems 2 or 3). We opted for
this for several reasons. First because it carried the selection aspect of the problem.
Second, it allowed the development of a methodology that could easily be expanded to
include a greater number of examinee partitions.

There are some complications with the data set that could not be removed, but
whose effects are limited. One of these problems involves zero scores. The most common
score on these problems was zero. Sometimes this is because the examinee tried the
problem but failed to achieve any creditable result. Sometimes it is because the examinee
omitted the problem entirely. When this occurs we have no information about which
problem (2 or 3) was omitted, and the data entry process assigned a zero score, more-or-
less randomly to one or the other choice. A large part of the small misfit of the model is due
to an overabundance of zero scores.?

While we examined the entire multiple choice portion of the exam, we have opted to
use only six items-from this exam for the multiple choice anchor. In the past (Wainer et al,
1991) we have found that three or four well chosen items are sufficient for this purpose.
Thus we are assured that six would be ample. The analyses that we report below confirm
this.

The Results

The multiple choice section

The first analysis calibrated the entire multiple choice exam. We fit its 75 items with
a three parameter logistic IRT model using the computer program BILOG (Mislevy &
Bock, 1983). The section's marginal reliability was over .91; the mean difficulty was .49,
the mean slope waS .73, and the mean lower asymptote was .17. In general it looked just
like many other high quality, professionally produced, exams.

We examined the dimensionality of the items using full information factor analysis
(Bock, Gibbons, & Muraki, 1988) and discovered that, although it required three
dimensions to obtain an acceptable fit, those three dimensions were highly intercorrelated
and a one-dimensional solution did very well indeed. Trimming 'off some of the late-
appearing items that v,,re not reached by a significant proportion of the sample further
strengthened the one dimensional solution.

6"Everything should be as simple as possible, but no simpler."
?Current practice corrects this problem with graders assigning a for an omission and hence reserving a
score of '0' for 'attempted, but failed to achieve any credible result.'
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From our analyses of the multiple choice section we chose six representative items

to serve as an anchor in some of the subsequent analyses. These items were selected on the

basis of six criteria:

1. Their difficulties spanned the plausible range of the examinees' proficiency

distribution.

2. They were as discriminating as possible.

3. Their lower asymptotes were low enough to assure that guessing was minimal.

4. They fit the IRT model well and were situated as near to the principal dimension

obtained from the factor analysis as possible.

5. They were attempted by as large a proportion of the examinee population as

possible.

6. They, in tow, should be reasonably representative of the section's content domain.

It was not possible to find items that satisfied all of these goals simultaneously,
because it is hard to write items at extreme difficulties with steep slopes. Moreover,
difficult items tend to be at the end of the section and are often compromised by increased
omission. There were four content areas represented on the test; we managed to include a
representative of three of these in our sample. The six items chosen as well as their
statistical and content characterizations are shown in Table 1.

Table 1. Characteristics of the six items chosen to serve as the equating
anchor

Item

Number Slope Difficulty

Lower
Asymptote

Percent
Reached

1 0.85 -1.08 0.16 100

40 1.07 -0.62 0.15 100

13 1.04 0.61 0.16 100

55 1.02 1.13 0.22 100

66 1.13 1.70 0.20 96

69 0.72 3.34 0.21 94

Item Content

Descriptive chemistry & lab

Reaction
Structure of matter

Reaction

Reaction
Descriptive chemistry & lab

Why did we restrict ourselves to only six items for an anchor? Why not use all, or

most, of the 75? There are two parts to the answer to these questions. First, we expect that
for our purposes six items will provide ample stability for an anchor test. This has been the

case in earlier work on the development of a 'designated anchor' in DIF work (Wainer et
al, 1991). Secondly, in subsequent analyses we will be using the response pattern on the
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r.hor, not the raw score. Six items add 26 (= 64) patterns to the analysis. When we try to
equate two problems, each having 10 score categories with an anchor made up of n binary
items, the table analyzed is 2 x 10 x 2". For 6 items this is 1,280, for 7 items 2,560, and
for 8 items 5,120. It is clear that even with 18 thousand examinees one very quickly
reaches a point at which there are many cells with few observations. Thus unless we are
willing to use 'number right' as the stratifying variable we face serious practical
constraints. 'Number right' is justified (that is, a sufficient statistic for the estimation of 0)
only for the Rasch model. Because of the frequency of guessing, these items are not well
fit with the Rasch model.

Constructed Response Section
Problems 1, 2 and 3

The first three problems (Sections A and B) were fit with the IRT model in
equation 1, using the computer program Multilog (Thissen, 1991). This was 'done in three
stages. First we fit those 14,270 examinees who answered Problems 1 and 2 (Group I) and
then, separately, the remaining 4,161 who answered Problems 1 and 3. These separate
analyses provided us with independent estimates of the parameters for Problem 1 and fit
statistics for the two groups separately. We then specialized the model for each by reducing
the power of the polynomials for the 'a' and 'c' parameters for each problem. During the
course of this we discovered that with this large sample size, small perturbations in the fit
of the polynomial to the estimated parameters can have a profound effect on the likelihood.
This was different from our previous experience in other contexts. Consequently we
sacrificed the possible savings of some degrees of freedom and over-fit the model. For
example, the polynomial used to fit the the ten values of 'c' for each model was of 9th
degree. The a's were fitted with quartics.

After doing this initial calibration we joined the two Groups and redid the analysis
with both groups together. The form of the data is shown in Table 2.

Table 2. Schematic structure for equating problems 2 and 3

Problem Group I Group II
1 X X
2 X
3 X

From this analysis we obtained an estimate of the difference between the means of
the proficiency distribution of the two groups as well as equated estimates of the parameter
values for all three items. These estimates are on the same IRT scale, given Problem 1 as
the anchor. Crucial to the interpretation of these results is the untestable assumption that
conditioning on 0 through Problem 1 accounts for any differences observed in the groups
due to their choice behavior. We will examine further the viability of this assumption
shortly. The results of this analysis are shown in Table 3.
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Table 3. Estimated parameters for Problems 1, 2, and 3

Score i

Category I
Problem 1

a c I

Problem 2
a c

Problem 3
a c

0 -4.5 1.2 -4.8 0.7 -3.1 0.5

1 -2.8 2.0 -3.6 1.1 -2.2. 1.3

2 -1.5 2.5 -2.5 1.4 -1.4 1.2

3 -0.6 2.6 -1.6 1.5 -0.7 1.1

4 0.2 1.6 -0.6 1.3 -0.2 0.9

5 0.8 0.2 0.4 0.9 0.3 0.5

6 1.4 -1.1 1.5 0.3 0.8 0.1

7 1.9 -2.2 2.7 -1.1 1.4 -0.8

8 2.3 -2.9 3.8 -2.4 2.0 -1.6

9 2.7 -3.8 4.8 -3.8 3.0 -3.3

The mean of Group II was fixed at 0 and the mean ofGroup I was Pc...mated to be

-.03. This small estimated difference in mean 0 suggests that the two groups formed on the
basis of their choice in Part B of the exam are of roughly the same proficiency on the IRT

scale.

At this point we can answer several interesting questions from the values of the fit

statistics in the various analyses. Shown in Table 4 are the values of G2 obtained from
2loglikelihood. While their absolute values are hard to interpret, comparisons among them

are meaningful. To begin, we note that when we add the G2 associated with the fit of
Group I alone to that obtained from Group II alone we obtain a value of 196. When we fit

data from the two groups together we are estimating only one set of a and c parameters for

Problem 1 instead of the two sets used when they were analyzed separately. The difference

between the fit with this equality constraint and without it, 216 196 = 20, is distributed as

a X2 on 12 degrees of freedom and is not significant. This implies that Problem 1 performs

the same in both groups (no DIF).
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Table 4. Summary of fit statistics for the sequence of model,, tested

Model d.f. G2

Group I Alone 73 118
Group II Alone 73 78

Total 146 196

Groups I & II Jointly:
2 & 3 parameters estimated 158 216

A2=A3 constrained 162 311
A2=A3 & C2=C3 constrained 171 508

The next three analyses were meant to determine the viability of the current practice
of treating Problems 2 and 3 as equally difficult. If this practice is valid we should find that
when we constrain the parameters of Problems 2 and 3 to be equal the value of the
goodness-of-fit G2 should not increase much more than the number of degrees of
freedom. The first analysis constrained all of the a's and c's for Problems 2 and 3 to be
equal. Thi's resulted in a G2 of 508, an increase of 292. This leaves no doubt that these two
problems are not performing the same. The next analysis constrained the a's separately in
an effort to determine what characteristic of the problems differed (slope or intercept). As
is evident from the results shown in Table 4, the answer is "both."

These analyses speak to the statistical significance of the observed differences
between the item parameters for Problems 2 and 3. The next question we must address is
the size of these differences. The parameters shown in Table 3, when substituted into
Equation (1), generate a set of 10 trace lines for each item. Each trace line is the probability
of obtaining a particular score as a function of proficiency (0). We can easily aggregate
across trace lines by multiplying the value of the trace line by the score category and
summing across trace lines to obtain the expected score as a function of O. That is,

E(Score10) = xTix(0)
i=o

(4)

Shown in Figure 1 are the expected score curves for Problems2 and 3. As is
evident Problem 2 is easier than Problem 3 for examinees with above average proficiency.
The exact amount of the advantage for examinees who chose Problem 2 is easily seen when
we plot the difference between the two curves. Figure 2 shows that there is about a one
point advantage to choosing Problem 2 for an examinee whose proficiency is about 8 =1.5.
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Figure 1

Problem 2 is easier than Problem 3
for above average examinees
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Choosing Problem 2 can give a good student
as much as a one point advantage
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Combining Multiple Choice and Constructed Responses

The next step in our investigation involves combining the information contained in
the multiple choice section with that in the constructed response section. We do this by
using the six multiple choice items as the linking items to calibrate Problems 2 and 3. This
is identical to the procedure ( 'scribed in the previous section except that the 6 multiple
choice items are substituted for Problem 1. We do this for several reasons. First to
determine the extent to which the trait being tested by the multiple choice items is the same
as that being tested by the constructed response items. If it is the same trait then certainly
many of the measurement goals of the test would be satisfied more economically by
expanding the multiple choice section. More to the point of this investigation, if the multiple
choice anchor works it eases many practical problems associated with equating all of the
possible 'forms' of this test.

We have found that one way to think about these results is that there is a
`constructed response 0' and a 'multiple choice 0.' We wish to know how similar these
two latent dimensions are. We determine this by considering the response curves for
Problems 2 and 3 when they are calibrated on these two latent dimensions separately. The
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extent to which they are similar characterizes the extent to which the two possible latent
dimensions are really the same. We found that the two 8s appear to be closely related. To

the extent that any difference exists it involves Problem 2. As shown in Figure 3, the
relatively steeper slope of the expected score curve for Problem 2 calibrated with

Problem 1, as opposed to the same curve when it is calibrated with the multiple choice

items, indicates that Problem 2 is somewhat moreclosely related to Problem 1 than it is to

the multiple choice items. This is exactly what one would expect if the 'multiple choice 8'

was not quite the same as the 'constructed response O.' Remember that this curve would be

horizontal if they were orthogonal; that is if there was no relation between multiple choice
proficiency and expected score on a constructed response problem.

10

Figure 3

The expected score function for Problem 2
obtained with two different kinds of anchors
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Multiple Choice Anchor
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The expected score function for Problem 3
obtained with two different kinds of anchors
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The expected score curves for Problem 3, shown in Figure 4, are nearly identical.
We conclude that we will not go very far wrong acting as if both kinds of items are testing
essentially the same thing. Certainly a comparison of the difference between the expected
curve lines for Problems 2 and 3 (shown in Figure 1) is very large in comparison to the
differences seen in Figures 3 and 4. It is far less cavalier to believe that multiple choice
items test the same thing as do constructed response items than to believe that Problems 2
and 3 are equally difficult.

What would IRT scale scores be?

IRT scale scores directly correct for the differences in difficulty between the two
Problems. The expected a posteriori (EAP) estimates of 13 for several illustrative response
patterns are shown in Table 5. For response patterns associated with very low levels of 13,
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like 00 on Problems 1-2 or 1-3, or 000000 on the six multiple choice items and 0 on the
constructed response problems, there is very little difference between theestimates
involving Problems 2 and 3. However, for response patterns associated with higher levels
of 0, the IRT scale score is about 0.15 standard units higher for the reponse pattern
involving the more difficult Problem 3 than it is for the corresponding response pattern
involving Problem 2.

Table S. An illustration of the value of q obtained for various response
patterns

Response
Pattern

EAP[0]
Problems

1-2

EAP[e]
Problems

1-3

Response
Pattern

EAP[0]
M. Choice
Problem 2

EAP[8]
M. Choice
Problem 3

00 1.39 1.41 000000 0 1.59 1.57

33 0.15 0.30 111000 4 0.15 0.22

77 1.35 1.52 111110 7 1.26 1.37

99 2.17 2.29 111111 9 2.17 2.31

What is the effect of examinee choice?

So far we have been assuming that the examinees' choice is, in some sense, at
random. Empirically what this assumption means is that we could:

(i) Estimate an examinee's proficiency from those parts of the test that were chosen,

(ii) Estimate the parameters of each item from those examinees who chose it , and

(iii) Use the IRT model to describe the performance of each examinee on those items
that were not chosen.

Goodness-of-fit and other statistical measures do not directly speak to the accuracy of
predictions about what has not been observed. Strictly speaking we cannot go any further
without gathering data from examinees on the items that they chose not to answer and
comparing these results with what was predicted from the model. This is at least impractical
and may be impossible.

However, we can do something with the data on hand that provides a plausible
upper bound on the quality of the equating scheme. We can omit part of the data for one of
the two groups and predict what those scores would have been, and then see what they in
fact were. Thus we might set aside Group II's data on Problem 1 and estimate performance
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on that problem based on the multiple choice anchor and the performance of Group I on
Problem 1. Of course we could do the same thing with the groups reversed. One obvious
approach is to compare the parameter structure for Problem 1 obtained with each group
separately, since it is those parameters that determine the response pattern frequencies.
How can we estimate the parameters for Problem 1 separately for Groups I and II using
only the multiple choice items as anchor? And, more specifically, how can we determine if
the two different estimates of those item parameters are significantly different from one
another?

We used established DIF technology (Thissen, Steinberg & Wainer, 1992; Wainer
Sireci & Thissen, 1991) to answer the question, "Does Problem 1 operate differently in
Group I than in Group II?" The structure of the analysis is summarized in Table 6, in
which we denote Problem 1 for Group I as "1*" and for Group II as "1**."

Table 6. Schematic represntation of the analysis plan for examining the
credability of the ignorable nonresponse assumption with problem
1, using the multiple choice items as the equating anchor.

Problem Group I Group II
MC
1*
1**

X
X

X

X

In the analysis, we act as though examinees in Group I answered Problem 1* but
omitted Problem 1**, and that those in Group II did the opposite. The 6 multiple choice
items act as the anchor and the parameters for Problem 1 are estimated separately for the
two groups. The estimated value of the parameters obtained as well as the likelihood ratio
G2 are shown in Table 7. The rightmost panels of Table 7 contain the estimated parameters
for Problem 1 when they are constrained to be equal in the two groups (the "No DIF"
model). As is evident from the values of the parameters, there is very little difference in the
performance of Groups I and II on Problem 1. The likelihood increases by 22 (on 13
degrees of freedom), which confirms this impression. Last, in Figure 5, we show the
plots of expected scores obtained from the model for the parameter estimates obtained
separately for each group: the two curves are virtually coincident.
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Table 7. The estimated parameters obtained for Problem 1 under three
different circumstances.

Score
Category

Problem I*
a c

Problem 1**
a c

Problem
a c

0 -3.9 1.5 -3.6 1.7 -3.8 1.6

1 -2.7 2.0 -2.7 2.0 -2.7 2.0
2 -1.7 2.5 -1.7 2.3 -1.7 2.5
3 -0.8 2.6 -0.7 2.4 -0.8 2.6
4 0.0 1.6 0.1 1.5 0.1 1.6

5 0.8 0.2 0.8 0.0 0.8 0.1

6 1.4 . -1.3 1:3 -1.1 1.4 -1.2
7 2.0 -2.4 1.8 -2.2 1.9 -2.4
8 2.4 -3.1 2.1 -2.8 2.3 -3.0
9 2.5 -3.6 2.6 -3.8 2.5 -3.6

Likelihood Ratio
Chi-square

1187

Figure 5

The expected score curve for Problem 1 is the
same for both of the choice groups
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From this result we conclude that the model predicts performance on Problem 1 for
either group from that group's performance on the multiple choice anchor and the other
group's performance on Problem 1. We view this as some support for the joint scaling that
this exercise in model fitting has accomplished.

Discussion & Conclusions

"Establish equating procedures with the highest level of precision
practicable when scores on different test editions are intended to be

comparable."

ETS Standards for Quality and Fairness, 1987, p. 18

Why do we need to equate at all?

Current practice does not equate across items within a particular part of the
exam. This means that if a student receives a raw score of 6 on a problem, it :s of no
consequence whether it was on problem 2 or 3. As we have shown, Problem 3 is more
difficult, and so a student who gets a score of 6 on it is, in a very real sense,
demonstrating more proficiency than another student who gets a 6 on Problem 2. Why
is no adjustment made? One argument we have heard is that both students had the
opportunity to answer either question, and if someone chose freely to attempt the harder
problem it was their choice and they must live with the' consequences of their action. We
have some (but not a lot of) sympathy toward this view. The validity of this view hinges
on the assumption that both students really had a choice. This may not be correct. The
construction of the exam is meant to mirror the diversity of valid chemistry courses that
might be offered. One course might emphasize stoichiometry, a second might emphasize
thermodynamics. Both courses, and the viewpoints that generated them, may be equally
valid. And yet, students who took the former course and confront the 'choice' really
have no choice. The thermodynamics question is not one that they could successfully
attempt.

Strenuous attempts are made in the course of test development to create problems
of equal difficulty. We are certain that if empirical evidence were presented during the
process of test development that a pair of problems differ significantly in their difficulty,
modifications would be made to the problems to make them more equitable. Thus, we
argue that when this evidence turns up after a lest has been administered, canons of
fairness and psychometric practice require some post hoc statistical adjustment. The
procedures that we have developed and illustrated here are a reasonable place to begin
such an adjustment.

Should we allow choice? If so, how many?

A broader question that needs serious consideration revolves around the use of a
test format that allows examinee choice. As we pointed out earlier, this test has 1,120
different forms. The canon of good practice quoted at the beginning of this section
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makes it clear that under such conditions these different forms must he equated as

accurately as possible. Yet is any equating even possible? In this paper we have

attempted to equate just two of these forms. We seem to have succeeded, but without the
confirmatory evidence that can only be obtained with further data, we cannot be sure.

The procedure we followed was time-consuming (in both human and machine time) but

conceivably could be done for more than just .wo groups. The extent to which our

results are convincing is partially due to the size of the sample used in the various
estimations. Dividing the sample into 1,120 groups will surely leave some groups with

vanishingly small samples. In those groups many of these analyses would lose their

credibility.

In addition to difficulties associated with sample sizes, there is a substantial

covariance between item difficulty parameters and the location of group proficiency

distributions. This can lead to instabilities in the estimation process. In this study we
found local extrema on the path to final parameter estimates. With just two groups a

careful exploration of the nriltivariate response surface was possible and these potential

snares avoided. In an analysis estimating hundreds of groups' means such scrutiny
might not be possible. At least part of this problem is due to the way that MULTILOG
estimates group meansas just another parameter in the likelihood equations. If this
estimation was done separately we believe that these problenis could be solved, although
this is informed speculation at the moment and more work is required.

Now good are the constructed response problems?

The Problems considered here appear to be very good indeed. We found in the
analyses involving just two problems (1 & 2 or 1 & 3) that the reliability for each of

these short tests was about .75. This is an 'ndication of the amount of information that

can be obtained with partial credit and a rigorous scoring scheme. Some of this high
reliability can be chalked up to an easy task of separating a group of well trained
examinees from another group of poorly trained ones (remember the abundance of zero
scores). Nevertheless, these appear to be very good items. A lesson to be learned is that

one can get a reliable test from constructed responses that are scored by human judges,

if the rules that the judges use are specific and rigorous. This result should not be
construed as support for holistic scoring. We do not know the extent to which these
rigorous scoring rules can be automated, but to the extent they can be, then human

judges are merely being used to read handwriting. Computerized administration of the

test may solve the handwriting problem and automated scoring can ensue.

If the establishment of a rather rigidly defined set of scoring criteria is a sine qua

non for reliable judging, how much do we gain using constructed responses over
multiple choice items? The latter have many advantages in terms of time utilization,
domain coverage, and practicality of use. Moreover, as we discovered, they seem to be
testing very much the same thing. There are many contemporary arguments supporting a
constructed response format. These usually involve the sorts of cognitive activity they
require, as well as the structure of study that ensues if they are known to be in use.



These advantages may exist, but the empirical evidence observed from performance on
these items shows very little deviation from a single factor.

It may be helpful to consider a broader view of the multiple choice item. A recent
proposal (Johnson, 1991) suggested using ten choice items (to reduce the effects of
guessing) in which the examinee's task is to choose the option closest to the correct
answer (to prevent working backward). Thus a question "Find the square root of 5"
might have as answers: 0, .5, 1, 1.5, 2, 2.5, 3, ... . The extent to which this scheme is
useful for a broader range of problems is unknown. We mention it only as an example
of what can be achieved within the rubric of a completely objectively scored test format.
Note that this scheme can incorporate expert judgement for more subtle kinds of
questions (i.e., "Which statement best characterizes Molly in Joyce's Ulysses?").
Experts decide, subjectively, what are correct answers and then the question is graded
objectively.

Meanwhile, to the extent that the use of constructed response problems is
required, and to the extent that the responses may be characterized with a unidimensional
IRT model, we have shown how comparable scores can be produced in the context of
choice.
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